- raksturojums
- Vienkāršs vai salikts
- Deklarējošs
- Trūkst divdomības
- Ar vienu patiesības vērtību
- Var simboliski attēlot
- Savienotāju vai loģisko savienojumu izmantošana
- Patiesības galdi
- Nepareizu apgalvojumu piemēri
- Vienkārši priekšlikumi
- Saliktie priekšlikumi
- Atsauces
Šīs kļūdainās priekšlikumi ir loģisks vienības ar patiesības vērtību nulli (viltus). Parasti piedāvājums ir lingvistisks (teikums) vai matemātisks izteiciens, no kura var pārliecināties par tā patiesumu vai nepatiesību. Priekšlikumi ir loģikas pamats un veido ļoti specifisku lauku, kas pazīstams kā piedāvājuma loģika.
Tādā veidā priekšlikuma galvenā īpašība ir tā iespēja tikt deklarētam pēc tā patiesās vērtības (nepatiesa vai patiesa). Piemēram, izteiciens Huans, dodieties uz veikalu! tas neatspoguļo priekšlikumu, jo tam šādas iespējas nav. Tikmēr tādi teikumi kā Huans devās uz veikalu pirkt vai Huans dodas uz veikalu darīt.
Vienkāršs nepareiza piedāvājuma piemērs
Tagad matemātiskajā plaknē "10−4 = 6" un "1 + 1 = 3" ir izteikumi. Pirmais gadījums ir par patiesu ierosinājumu. No otras puses, otrais ir daļa no kļūdainajiem priekšlikumiem.
Tātad svarīgs ir nevis piedāvājums vai tā pasniegšanas veids, bet gan tā patiesā vērtība. Ja tas pastāv, tad arī piedāvājums pastāv.
raksturojums
Vienkāršs vai salikts
Kļūdaini apgalvojumi var būt vienkārši (tie izsaka tikai vienu patiesības vērtību) vai salikti (tie izsaka vairākas patiesības vērtības). Tas ir atkarīgs no tā, vai ķēdes elementi ietekmē jūsu komponentus. Šie saistītie elementi ir zināmi kā savienotāji vai loģiski savienojumi.
Pirmais piemērs ir kļūdaini šāda veida apgalvojumi: "Baltais zirgs ir melns", "2 + 3 = 2555" vai "Visi ieslodzītie ir nevainīgi".
Otrajam tipam atbilst tādi izteikumi kā "Transportlīdzeklis ir melns vai sarkans", "Ja 2 + 3 = 6, tad 3 + 8 = 6". Pēdējā tiek novērota saikne starp vismaz diviem vienkāršiem piedāvājumiem.
Tāpat kā patiesie, viltus ir savstarpēji saistīti ar citiem vienkāršiem priekšlikumiem, kas var būt daži nepatiesi, bet citi - patiesi. Visu šo apgalvojumu analīzes rezultāts rada patieso vērtību, kas būs raksturīga visu iesaistīto ierosinājumu kombinācijai.
Deklarējošs
Kļūdaini apgalvojumi ir deklaratīvi. Tas nozīmē, ka viņiem vienmēr ir saistīta patiesības vērtība (nepatiesa vērtība).
Ja jums, piemēram, ir “x ir lielāks par 2” vai “x = x”, jūs nevarat noteikt nepatiesības (vai patiesuma) vērtību, kamēr nezināt, ka “x” apzīmē faktu. Tāpēc neviens no abiem izteicieniem nav uzskatāms par deklaratīvu.
Trūkst divdomības
Kļūdainajiem priekšlikumiem nav divdomības. Tie ir veidoti tādā veidā, ka tiem ir tikai viena iespējamā interpretācija. Tādā veidā tā patiesā vērtība ir fiksēta un unikāla.
No otras puses, šis divdomības trūkums atspoguļo tā universālumu. Tādējādi tie var būt vispārēji negatīvi, īpaši negatīvi un eksistenciāli negatīvi:
- Visas planētas griežas ap sauli (vispārēji negatīvas).
- Daži cilvēki ražo hlorofilu (īpaši negatīvu).
- Nav sauszemes putnu (eksistenciāli negatīvi).
Ar vienu patiesības vērtību
Kļūdainiem apgalvojumiem ir tikai viena patiesības vērtība, nepatiesa. Viņiem vienlaikus nav patiesās vērtības. Katru reizi, kad tiek izvirzīts viens un tas pats piedāvājums, tā vērtība paliks nepatiesa, kamēr nemainās apstākļi, kādos tas tiek formulēts.
Var simboliski attēlot
Kļūdainus priekšlikumus var simboliski attēlot. Šajā nolūkā vārdnīcas pirmie burti tiek piešķirti parastajā veidā, lai tos apzīmētu. Tādējādi piedāvājuma loģikā mazie burti a, b, c un nākamie burti simbolizē piedāvājumus.
Kad piedāvājumam ir piešķirts simbolisks burts, tas tiek saglabāts visā analīzes laikā. Tāpat, kam piešķirta atbilstošā patiesības vērtība, priekšlikuma saturam vairs nebūs nozīmes. Visa turpmākā analīze balstīsies uz simbolu un patiesības vērtību.
Savienotāju vai loģisko savienojumu izmantošana
Izmantojot saites (savienotājus vai loģiskos savienojumus), var salikt vairākus vienkāršus nepareizus piedāvājumus un veidot savienojumu. Šie savienotāji ir savienojums (un), disjunkcija (vai), implicācija (tad), ekvivalence (ja un tikai tad) un negācija (nē).
Šie savienotāji tos saista ar citiem, kas, iespējams, arī nav pareizi. Visu šo apgalvojumu patiesības vērtības tiek apvienotas viena ar otru, ievērojot noteiktus principus, un, ņemot vērā visu zināmo, tas dod "kopējā" patiesības vērtību visam saliktajam piedāvājumam vai argumentam.
No otras puses, savienotāji piešķir “pilnīgu” patiesību vērtību priekšlikumiem, kurus viņi ķēdi kopā. Piemēram, nepareizs apgalvojums, kas savienots ar nepareizu paziņojumu, izmantojot disjunkcijas savienotāju, atdod savienojuma nepatiesu vērtību. Bet, ja tas ir pieķēdēts patiesam apgalvojumam, saliktā paziņojuma patiesā vērtība būs patiesa.
Patiesības galdi
Visas iespējamās patiesības vērtību kombinācijas, kuras kļūdaini apgalvojumi var pieņemt, ir zināmas kā patiesības tabulas. Šīs tabulas ir loģisks rīks, lai analizētu dažādus kļūdainus priekšlikumus, kas saistīti.
Tagad iegūtā patiesības vērtība var būt patiesa (tautoloģija), nepatiesa (pretruna) vai kontingenta (nepatiesa vai patiesa, atkarībā no apstākļiem). Šajās tabulās nav ņemts vērā katra kļūdainā paziņojuma saturs, tikai to patiesā vērtība. Tāpēc tie ir universāli.
Nepareizu apgalvojumu piemēri
Vienkārši priekšlikumi
Vienkāršiem piedāvājumiem ir viena patiesības vērtība. Šajā gadījumā patiesības vērtība ir nepatiesa. Šī vērtība tiek piešķirta atkarībā no personas, kas to piešķir, personiskās realitātes uztveres. Piemēram, šādiem vienkāršiem apgalvojumiem ir nepatiesa vērtība:
- Zāle ir zila.
- 0 + 0 = 2
- Studijas brutalizē cilvēkus.
Saliktie priekšlikumi
Kļūdaini salikumi tiek veidoti no vienkāršiem, kas ir savienoti caur savienotājiem:
- Zāle ir zilā krāsā, un studijas cilvēkus stultificē.
- 0 + 0 = 2 vai zāle ir zila.
- Ja 0 + 0 = 2, tad zāle ir zila.
- 0 + 0 = 2, un zāle ir zila tikai un vienīgi tad, ja studijas cilvēkus stulmē.
Atsauces
- Teksasas Universitāte Austinā. (s / f). Propozīcijas loģika. Paņemts no cs.utexas.edu.
- Simona Freizera universitāte. (s / f). Propozīcijas loģika. Paņemts no cs.sfu.ca.
- Old Dominion universitāte. (s / f). Priekšlikums. Paņemts no cs.odu.edu.
- Interneta filozofijas enciklopēdija. (s / f). Propozīcijas loģika. Paņemts no iep.utm.edu.
- Encyclopædia Britannica. (2011, aprīlis). Patiesības galds. Ņemts no britannica.com.
- Andrade, E .; Kubīdi, P .; Márquez, C .; Vargas, E. un Cancino, D. (2008). Loģika un formālā domāšana. Bogota: Redakcijas universitātes del Rosario redakcija.
- Grants Luckhards, C .; Bechtel, W. (1994). Kā darīt lietas ar loģiku. Ņūdžersija: Lawrence Erlbaum Associates, Inc.